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Abstract

We present a velocity-based model for realistic collision avoidance among virtual characters. Our approach is

elaborated from existing experimental data and is based on the simple hypothesis that an individual tries to

resolve collisions long in advance by slightly adapting its motion. We have evaluated our model by testing it

against a wide range of challenging scenarios. In all of our simulations, the characters exhibit smooth and visually

convincing motions, avoiding all collisions with minimal effort. The method reproduces emergent behaviour, like

lane formation, that have been observed in real crowds. It is relatively easy to implement and and is fast, allowing

the simulation of crowds of thousands of characters in real time.

Categories and Subject Descriptors (according to ACM CCS): I.2.9 [Robotics]: Kinematics and dynamics I.2.1
[Applications and Expert Systems]: Games

1. Introduction

An important aspect in realistic crowd simulation is the way
that virtual characters interact and avoid collisions with each
other. The problem is very challenging since people are ac-
customed to real-world situations and thus, they can easily
detect inconsistencies and artifacts in the simulations.

Over the past few years, several models have been pro-
posed for solving interactions between virtual humans.
State-of-the-art techniques for local collision avoidance are
based on the seminal work of Reynolds [Rey99], as well as
the concept of Velocity Obstacle [FS98] that was introduced
in robotics. In these approaches, the trajectories of the char-
acters are linearly extrapolated and used to predict and re-
solve collisions in the near future. Although such approaches
exhibit robust avoidance behaviour, the resulting simulations
are far from realistic. The characters seem to lack anticipa-
tion, whereas the generated motions are often characterized
by oscillatory behaviour. These problems tend to be exacer-
bated in dense and congested environments, leading to un-
convincing crowd flows.

Contributions. In this paper, we address the problem of vi-
sually compelling and natural looking avoidance behaviour
between interacting virtual characters. We first exploit ex-
isting motion capture data to gain a better understanding

into how humans solve interactions in real-life. Based on our
analysis and some known facts about human locomotion, we
propose a model for realistic collision avoidance. In our ap-
proach, each character anticipates future collisions and tries
to resolve them in advance by slightly adapting its orien-
tation and/or speed. Consequently, the characters avoid all
collisions as early as possible and with minimal effort which
results in a smooth and optimal flow.

We demonstrate the potential of our approach in several
challenging scenarios, as can be seen in Figure 1. Experi-
ments show that our model leads to energy-efficient motions
and considerably less curved paths, compared to existing ap-
proaches. The generated motions are oscillation-free, allow-
ing us to directly infer the orientation of the characters from
their underlying velocities without the need of smoothing
out abrupt changes in their steering directions. The technique
is easy to implement and can be used to simulate crowds of
thousands of characters at real-time frame rates.

Organization. The remainder of the paper is organized as
follows. Section 2 provides an overview of prior work re-
lated to our research. In Section 3, we analyze experimen-
tal interaction data and present some key concepts regard-
ing how pedestrians interact with each other in real life. Our
model for local collision avoidance is described in Section
4. Experiments to evaluate our approach are presented in
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(a) (b) (c)

(d) (e) (f)

Figure 1: Test-case scenarios: (a)-(b) Interactions in confined environments. (c) Agents crossing paths in a hallway. (d) Square

scenario. (e) 1000 agents in an obstacle-free environment. (f) 2000 agents navigating through an obstacle-filled environment.

Section 5. Finally, some conclusions and plans for further
research are discussed in Section 6.

2. Related Work

Numerous models have been proposed to simulate individ-
uals, groups and crowds of interacting characters. These in-
clude continuous methods that unify global and local naviga-
tion into a single framework (e.g. [Hug03, TCP06]), as well
as approaches that decompose global planning from local
collision avoidance (e.g. [LD04,GO07,SGA∗07]). Since our
current research focuses on local interactions between vir-
tual characters, this section briefly overviews existing work
in collision avoidance.

Reactive steering. In reactive steering, the character adapts
its previously computed motion to the dynamic and static ob-
stacles found along its path. Reactive navigation techniques
originate from the robotics community and are based on
variants of potential-field approaches [Kha86]. In the anima-
tion community, the concept of reactive planning was intro-
duced by the seminal work of Reynolds on boids [Rey87].
Reynolds used simple local rules to create visually plausi-
ble flocking behaviour. In the civil and traffic engineering
community, Helbing used physical forces to describe the so-
cial interactions between virtual pedestrians [HM95]. Since
his original work, a number of models have been proposed
to simulate crowds of pedestrians under normal and emer-
gency situations (e.g. [HBJW05, PAB07]). Nevertheless, in
all these approaches, due to lack of anticipation and predic-
tion, the characters interact when they get sufficiently close.
Consequently, the resulting motions tend to look unnatural
and contain undesirable oscillations.

Collision prediction. An alternative way for solving inter-
actions between virtual humans is based on collision predic-
tion; assuming that each character maintains a constant ve-

locity, the future motions of the characters are predicted by
linearly extrapolating their current velocities and then used
to detect and avoid collisions in the near future. Based on
this concept, Reynolds has introduced the unaligned colli-

sion avoidance behavior [Rey99], whereas Feurtey [Feu00]
devised an elegant collision detection algorithm that pre-
dicts potential collisions within time and resolves them by
adapting the speed and/or the trajectories of the agents. In-
spired by Feurtey’s work, Paris et al. [PPD07] presented an
anticipative model to steer virtual pedestrians without col-
liding with each other. More recently, Karamouzas et al.

[KHBO09] tackled the collision prediction problem using
social forces, whereas Pettré et al. [POO∗09] proposed an
egocentric model for solving pair-interactions between vir-
tual pedestrians based on a detailed experimental study. In
their model, collisions are resolved using a combination of
velocity and orientation adaptations depending on the role
that each pedestrian has during the interaction (passing first
or giving way).

Closely related to the aforementioned techniques is the
notion of Velocity Obstacle (VO) introduced in [FS98]. For
a given entity, the VO represents the set of all velocities
that would result in collision at some moment in time with
another entity moving at a given velocity. Using the VO

formulation, any number of obstacles can be avoided by
considering the union of their VOs and selecting a veloc-
ity outside the combined VO. Recently, van den Berg et

al. [vdBLM08] extended the VO formulation to guarantee
oscillation-free behaviour between two interacting charac-
ters and introduced the concept of Reciprocal Velocity Ob-

stacle (RVO). RVO randomly samples the velocity space and
heuristically searches for a velocity that leads to a collision-
free motion, minimizing at the same time the deviation from
the character’s desired velocity. Based on the RVO formu-
lation, Guy et al. [GCK∗09] proposed a highly-parallel al-
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gorithm for collision avoidance. Their proposed Fast Veloc-

ity Obstacle (FVO) provides avoidance behaviour similar to
the RVO, but is considerably faster since it only guarantees
collision avoidance for a discrete time interval and uses a
discrete optimization method to compute the final motion of
each character. Similarly, the Optimal Reciprocal Collision

Avoidance (ORCA) formulation allows each agent to select
a collision-free velocity by solving a low dimensional linear
program [vdBGLM09].

Example-based approaches. Example-based techniques
have also been explored for simulating interacting virtual
characters. These approaches use example behaviours from
video or motion capture data to drive the simulation of vir-
tual characters. In [LCL07], a database of human trajectories
is learnt from real pedestrian crowds. During the simulation,
each virtual character searches and retrieves the most simi-
lar example from the database. A similar approach has been
proposed by Lee et al. [LCHL07] aiming at reproducing hu-
man group behaviours in simulated environments. Although
such methods can realistically model crowds of virtual hu-
mans, their applicability is limited by the size of the example
databases. In addition, these approaches are too computa-
tionally expensive for real-time interactive applications and
are typically used for offline simulations.

Comparison to previous work. Our approach is somewhat
similar in nature to the VO methods mentioned above. We
also use the velocity space to plan the avoidance maneuvers
of each virtual character. However, we significantly reduce
the set of admissible velocities by taking into account how
imminent potential collisions are. Note that approaches like
FVO also reduce the admissible velocity domain. Our model,
though, is based on observed behaviour of real people ensur-
ing convincing avoidance behaviours.

To determine an optimal solution velocity among the ad-
missible ones, we use a cost function similar to the ones
proposed in [Feu00, PPD07, vdBLM08]. Nevertheless, we
also take into account the energy that is required to per-
form a certain avoidance maneuver. This ensures smooth
motions, allowing us to directly infer the character’s ori-
entation from the direction of its velocity vector, even for
dense and congested examples. Note that in most velocity-
based approaches, the orientation may oscillate over adja-
cent keyframes and thus, some sort of smoothing is required,
which may lead to undesirable effects.

Our approach also bears some resemblance to the model
proposed by Pettré et al., since we use their experimental
study to elaborate our collision avoidance algorithm. Our
analysis, though, focuses on the predicted time to collision

between interacting participants and the deviation from their
desired velocities, whereas they studied the effect that the
minimum predicted distance has on the participants’ accel-
erations. Additionally, their approach is mainly suited for
pair-interactions. Although it has been extended to simul-
taneously solve multiple interactions, in the resulting simu-

lations the characters seem to abruptly stop and change their
orientation. In contrast, our approach can be used to resolve
collisions among multiple characters in real-time, yielding
to visually convincing simulations.

3. Human Locomotion and Collision Avoidance

In this section, we present some key concepts about hu-
man locomotion and human-human interactions. We subse-
quently analyze existing motion capture data to gain more
insight into how individuals solve interactions and avoid col-
lision with each-other in real-life. In the next section, we use
our observations to formulate a model of realistic collision
avoidance.

Notion of personal space. An important concept in social
interactions is the personal space that surrounds an individ-
ual. More formally, the personal space is the portable ter-
ritory around an individual that others should not invade.
It regulates the psychophysical distance that the individual
needs to maintain in order to feel comfortable. The size and
the shape of the personal space are constantly changing de-
pending on the crowd density, as well as the travel speed
of the walker. According to Goffman [Gof71], the personal
space can be represented as an oval, narrow to the sides
of the individual and long in front of him/her. Gérin-Lajoie
et al. [GLRM05] have experimentally confirmed Goffman’s
observations and found that this area can be defined by an
elliptic curve.

Locomotion and energy expenditure. An extensive
amount of work has been conducted on human and bipedal
locomotion. Based on studies related to the energy expen-
diture in human walking, it is well accepted that individu-
als favour energy efficient motions. It has been experimen-
tally confirmed that humans adapt their motions so that the
energy required to perform a step becomes minimal (see
e.g. [Inm66]); the energy is transferred back and forth from
kinetic to potential, minimizing the total energy expenditure.
The criterion of minimum energy has been widely used in re-
cent approaches in the field of robotics and computer anima-
tion that are based on optimization theory. Such approaches
include the total energy consumption in their objective func-
tions aiming to obtain believable and natural-looking mo-
tions (see e.g. [WP03, SH07]).

Interactions and the principle of least effort. The prin-

ciple of least effort originates from the field of psychology
stating that given different possibilities of actions people
select the one that requires the least effort [Zip49]. Based
on the least effort theory, many systems for crowd simu-
lation have been proposed. Crowd Dynamics [Sti00], for
example, uses an agent-based framework in which agents
follow the paths of least resistance. More recently, Guy et

al. [GCC∗10] introduced a novel algorithm for simulating
large-scale crowds by computing a biomechanically energy-
efficient trajectory for each individual agent. However, all
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these approaches aim to control the macroscopic (global) be-
haviour of the virtual humans, whereas our focus is on the
local interactions of the individuals. Therefore, based on the
principle of least effort, we hypothesize that an individual,
upon interacting with another individual, tries to resolve po-
tential collisions as early as possible by slightly adapting his
motion.

The individual will adjust his trajectory in advance, trying
to reduce the interactions with the other walker. By slightly
changing his orientation or speed, he makes his intentions
known to the other. Eventually, some sort of coordination
takes place and the collision is resolved with minimal effort.
In the following, we test the validity of our hypothesis by
analyzing publicly available experimental data.

3.1. Experimental Analysis

The experimental dataset was provided by Pettré and his col-
leagues in order to gain more insight into interactions be-
tween pairs of walkers. 30 subjects participated in the exper-
iment and in total 429 trials were recorded. Each trial con-
sists of two participants crossing paths orthogonally while
walking toward the opposite corners of a square area. We re-
fer the reader to [POO∗09] for a detailed explanation of the
experimental protocol.

Our analysis focuses on the effect that the time to colli-
sion between two interacting participants has on the devi-
ation from the desired motion of each participant. In each
trial, similar to [POO∗09], the interaction starts at time ts
when the two participants can see each other and ends at
time t f when the distance between the participants is mini-
mal, that is

t f = argmin
t≥ts

‖x2(t)−x1(t)‖, (1)

where x defines the position of the participant’s trunk
[ALHB06], approximated by interpolating the two shoul-
der markers of the participant. During the interaction period,
ts < t < t f , we estimate the future motions of the two par-
ticipants by linearly extrapolating their current trajectories:

x
′
i = xi + tvi, i ∈ {1,2}, (2)

where the participant’s velocity vi is calculated using back-
ward finite difference. Then, we can determine whether and
when the participant P1 will collide with P2 as follows:

‖x
′
2 −x

′
1‖= r1 + r2, (3)

where r denotes the radius of a participant derived from
the distance between the two shoulder markers. Solving the
above equation, we can predict the time to collision tc(t) be-
tween P1 and P2 at time t. To be able to run comparisons
over all trials, the predicted time to collision for any time
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Figure 2: left: maximum and average deviation from the de-

sired orientation as a function of the normalized time to col-

lision, right: maximum and average deviation from the pre-

ferred speed as a function of the normalized time to collision.

ts < t < t f is normalized as follows:

tcn(t) =
tc(t)

max
t∈[ts,t f ]

{tc(t)}
(4)

tcn(t) ranges from 0 to 1, where 0 indicates that the two par-
ticipants are already colliding and 1 corresponds to the max-
imum time to collision between the two participants for the
current trial (note that the maximum collision time averaged
over all trials is 4.2s).

Time to collision and desired orientation. For any time
ts < t < t f , we define the participant’s deviation from his/her
desired orientation as follows:

∆θdes
i (t) = arccos

(
vi(t)

‖vi(t)‖
·nθdes

i

)

, (5)

where nθdes is the unit vector pointing towards the goal posi-
tion of the participant. Figure 2 (left) plots the participants’
deviations from their desired orientations as a function of
the normalized time to collision. We grouped the tcn into
10 clusters of equal length and then determined the max-
imum and average deviation angle per cluster. As can be
inferred from the figure, the maximum deviation angle is
quite small for predicted collisions that will take place in the
far future, tcn ≥ 0.9. After a small increase, the max devia-
tion angle remains more or less constant for a long period,
0.45 ≤ tcn ≤ 0.8. As soon as potential collisions starts to
become imminent (tcn < 0.4), the deviation angle increases
reaching to a peak when the tcn tends to 0. Similar trend is
also observed when looking at the evolution of the average
deviation angle with respect to tcn.

Time to collision and preferred speed. During the interac-
tion period, we define the preferred speed upre f of a partici-
pant by taking the average speed over this period. Thus, for
any time ts < t < t f , the participant’s deviation from his/her
preferred speed can be described by:

∆u
pre f
i (t) =

∣
∣
∣ ‖vi(t)‖−u

pre f
i

∣
∣
∣ (6)

Figure 2 (right) shows the effect that the normalized time to
collision has on the maximum and average speed deviation
of the participants. Compared to the orientation deviation,
the speed deviation remains constant for a longer period of
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Figure 3: Density of the deviation from the desired velocity

as a function of the predicted time to collision. left: partici-

pants that cross paths orthogonally, right: participants that

have to avoid head-on collisions.

time, tcn ≥ 0.2. Note also the abrupt increase of the maxi-
mum deviation at tcn < 0.2, which allows the participants to
successfully resolve threatening collisions by refining their
speed.

Discussion. In the aforementioned, we studied the influence
that the normalized time to collision has on the speed and the
orientation of the participants. To obtain a clear overview of
how participants solve interactions, we also cumulated all
pairs of predicted collision times and corresponding devia-
tion velocities ∆vdes for all trials. For any time ts < t < t f ,
the participant’s deviation from his/her desired velocity is
defined as follows:

∆v
des
i (t) = ‖vi(t)−v

des
i ‖, (7)

where the desired velocity is determined by the participant’s
preferred speed and orientation, that is vdes

i = u
pre f
i nθdes

i
.

Figure 3 (left) shows the density plot of the corresponding
bivariate data. As can be seen, in most of the trials the ma-
jority of the participants prefer to solve interactions in ad-
vance, that is when 2.0 ≤ tc ≤ 4.0, favouring small changes
in their velocities. Note also that very rarely participants
have to adapt their motions at imminent collision times, that
is when tc is close to 0, which shows the ability of people to
efficiently predict and avoid collisions.

In conclusion, our analysis confirms our hypothesis that
individuals resolve collisions long in advance by slightly
adjusting their motion. The current study focuses on par-
ticipants that have perpendicular trajectories. Another chal-
lenging case is when interacting participants have to avoid
head-on collisions. For that reason, we have recently con-
ducted an experimental study similar to the one proposed by
Pettré et al. Preliminary analysis of the corresponding in-
teractions data seems to support our main hypothesis (see
Figure 3, right). Note, though, that due to the fact that the
participants have exactly opposite desired directions, some
miscommunication on how they pass each other might be
detected. Thus, as can be observed in the figure, there are
cases that collisions are resolved at the last moment.

4. Collision Avoidance

In this section, we present our velocity-based algorithm for
local collision avoidance. Our approach is derived from our

experimental observations and can be integrated into exist-
ing approaches for crowd simulation.

Problem formulation. In our problem setting, we are given
a virtual environment in which n heterogeneous agents
A1, ...,An have to navigate without colliding with the envi-
ronment and with each other. For simplicity we assume that
each agent moves on the 2D plane and is modeled as a disc
with radius ri. At a fixed time t, the agent Ai is at position
xi, defined by the center of the disc, and moves with veloc-
ity vi. The motion of the agent is limited by a maximum
speed umax

i . Furthermore, at every time step of the simula-
tion, the agent has a desired velocity vdes

i that is directed to-
wards the agent’s goal position gi and has magnitude equal
to the agent’s preferred speed u

pre f
i .

4.1. Agent Collision Avoidance

An agent Ai solves interaction with the other agents in three
successive steps:

Step 1 - Retrieve the set of colliding agents. In the first step of
our algorithm, we compute the set CAi of first N agents that
are on collision course with the agent Ai. We first extrapolate
the future position of Ai based on its desired velocity vdes

i .
Similarly, we predict the future motions of all the nearest
agents that Ai can see by linearly extrapolating their current
velocities (Ai can only estimate the actual velocities of the
other agents and not their desired ones). The viewing area of
Ai is modeled as a cone defined by Ai’s desired direction of
motion and an effective angle of sight of 200◦ corresponding
to the field of view of a typical human.

Based on the predicted trajectories, we can now determine
whether the agent Ai will collide with another agent A j. We
assume that a collision occurs when A j lies inside or touches
the personal space of Ai, resulting in the following equation:

‖(x j +v jt)− (xi +v
des
i t)‖ ≤ r j +(ri +µi), (8)

where ri +µi denotes the size of Ai’s personal space (default
value of the minimum security distance µ is set to µ = 0.5m).
Note that in our simulations, for efficiency reasons, the per-
sonal area has a disc shape. This led to realistic behaviour
and hence, the use of an elliptical personal space was not
necessary. Solving the above equation for t, we can deduct
the possible collision time tci j between Ai and A j. If tci j ≥ 0,
the agent A j is inserted into the set of the agents that are on
collision course with Ai. Consequently, the set CAi is defined
as:

CAi =
⋃

j 6=i,0≤tci j

{A j, tci j} (9)

We sort this set in order of increasing collision time and
keep the first N agents. Experiments have indicated that this
number can be kept small (default value is N = 5). This
not only reduces the running time of our algorithm, but also
reflects natural human behaviour. In real-life, an individual
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tcmin
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δmax

∆θ
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Figure 4: Maximum orientation deviation for an agent, as a

function of the predicted time to collision.

takes into account a limited number of other walkers, usually
those that are on collision course with him/her in the coming
short time.

Step 2 - Determine the set of admissible orientations and

speeds. In the second step of the algorithm, we retrieve the
set of candidate orientations Oi ∈R

2 and speeds Ui ∈R that
the agent Ai can select in order to resolve the collisions with
the agents that belong to the set CAi. First, we determine the
collision time tc with the most threatening agent, that is the
agent in the set CAi with which Ai will collide first:

tc =
j 6=i

min
tci j∈CAi

{tci j} (10)

Then, based on our analysis in Section 3.1, we compute the
maximum angle that the agent Ai can deviate from its desired
velocity. The maximum deviation angle ∆θmax

i is approxi-
mated by a piecewise function (see Figure 4) as follows:

∆θmax
i (tc)=







δmax−δmid

e tc +δmid , if 0 ≤ tc < tcmin

δmid , if tcmin ≤ tc < tcmid

δmid
tcmid−tc

tcmax−tcmid
+δmid , if tcmid ≤ tc ≤ tcmax

0, if tcmax < tc

(11)
The tcmax defines the maximum time that Ai anticipates a
collision. Note that, in the experimental analysis, the max-
imum collision time averaged over all experiments is 4.2s.
However, in our simulations, each agent has to simulta-
neously solve interactions with multiple agents. Thus, a
higher anticipation time is used to ensure smooth avoid-
ance behaviour (default value is tcmax = 8s). The threshold
tcmid regulates the start of the constant part of the func-
tion, whereas the tcmin defines collisions that are immi-
nent to Ai leading to higher deviation angles (default val-
ues are tcmid = 6s, tcmin = 2.5s). The parameter δmax deter-
mines the maximum admissible angle that the Ai can devi-
ate from its desired direction of motion. In our simulations,
we assume that virtual characters cannot backtrack and thus,
δmax = π/2. Finally, the parameter δmid defines the devia-
tion angle during the constant interval of the function (de-
fault value is δmid = π/6).

Having retrieved the maximum deviation angle ∆θmax
i , we

determine the agent’s admissible orientation domain Oi as
follows:

Oi = { nθ | θ ∈ [θdes −∆θmax
i ,θdes +∆θmax

i ] }, (12)

where nθ = [cosθ,sinθ]T is the unit vector pointing in direc-
tion θ and θdes is the orientation derived from Ai’s desired
velocity.

A similar approach is also used to determine the admis-
sible speed domain Ui of the agent Ai. Based on the speed
deviation plot, shown in Figure 2, the Ui is approximated as
follows:

Ui =







u | u ∈ [0,umax], if 0 ≤ tc ≤ tcmin

u | u ∈ [upre f ,upre f ±∆umax
i ], if tcmin < tc ≤ tcmax

upre f , if tcmax < tc

(13)
where for the maximum speed deviation ∆umax

i holds that
∆umax

i ≤min(umax−upre f ,upre f ). In our simulations, we set
the default value of ∆umax

i to ∆umax
i = 0.4m/s, whereas the

default value for umax is set to umax = 2.4m/s. Note also that
the admissible speed domain takes into account the maxi-
mum speed constraint on Ai.

Step 3 - Select an optimal solution velocity. In the final step
of the algorithm, we compute an optimal solution velocity
for the agent Ai. First, we deduce the set of feasible avoid-
ance velocities FAVi from the agent’s admissible orientation
and speed domains as follows:

FAVi = {u nθ | u ∈Ui ∧nθ ∈ Oi} (14)

In practice, an infinite number of feasible velocities exist.
Thus, we restrict the Oi domain to a discrete set of orienta-
tion samples (default size of the discretization step is set to
0.078 radians). Similarly, we discretize the Ui domain into
a set of adjacent speed samples (default distance between
adjacent samples is set to 0.1).

Next, we select the agent’s new velocity vnew
i from the set

of feasible velocities. Among the candidate velocities vcand ,
we retain the solution minimizing the energy needed to adapt
the motion of the agent, the risk of collisions with the other
agents and the deviation from the agent’s desired velocity:

vnew
i = argmin

vcand∈FAVi

{

Energy
︷ ︸︸ ︷

α(1−
cos(∆φ)

2
) + β

∣
∣
∣ ‖vcand‖−‖vi‖

∣
∣
∣

umax

+γ
‖vcand −vdes

i ‖

2umax
︸ ︷︷ ︸

Deviation

+ δ
tcmax − tc

tcmax
︸ ︷︷ ︸

Collisions

}

(15)
where ∆φ defines the angle between the agent’s current ve-
locity vector and vcand . Consequently, the energy expendi-
ture in our cost function is approximated by taking into ac-
count changes both in the speed and the direction of the
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agent. Regarding the collision cost, tc denotes the mini-
mum predicted collision time between the agent Ai and the
agents in the set CAi, assuming that Ai selects a velocity
vcand ; note that tc is upper bounded by tcmax. The con-
stants α,β,γ,δ define the weights of the specific cost terms
and can vary among the agents to simulate a wide vari-
ety of avoidance behaviours. We set the default values to:
α = 1, β = 0.05, γ = 1, δ = 1. In all of our simulations,
these parameters generated the best agreement with our ex-
perimental observations, leading at the same time to visually
convincing simulations.

Having retrieved the new velocity vnew
i , the agent ad-

vances to its new position xnew as follows:

x
new
i = xi +v

new
i ∆t, (16)

where ∆t is the time step of the simulation. Note that if the
agent is also subject to dynamic constraints (e.g. maximum
acceleration), we can either take them intrinsically into ac-
count upon constructing the set of feasible velocities, or re-
strict the newly derived velocity based on the given con-
straints. During each simulation cycle, we also update the
orientation of the agent. The energy term in our cost func-
tion does not allow the agent to abruptly change its direction,
ensuring smooth avoidance motions. Thus, the new orienta-
tion θnew

i of the agent is directly inferred from the solution
velocity, that is:

θnew
i = arctan(vnew

i ) (17)

4.2. Resolve Threatening Collisions

In most cases, the agent Ai solves interactions in advance,
smoothly evading the other agents. It is possible, though, for
the agent Ai to collide with another agent A j, especially in
very crowded environments. A collision occurs when A j in-
vades the personal space of Ai, which does not necessarily
mean that A j penetrates Ai. As a result, the agent Ai must
select a new velocity that will resolve the collision as fast as
possible. For that reason, we drop the energy cost term from
our optimization function and modify the Equation (15) as
follows:

v
new
i = argmin

vcand∈FAVi

{γ
‖vcand‖

umax +δ
tc

tcmax
}, (18)

where now tc denotes the time that is needed to escape the
collision, that is the time that Ai needs to exit from the disc
B(x j,r j + µi + ri) centered at agent A j and having radius
equals to the sum of radius of A j and the personal space of
Ai. Note also that the desired velocity in the deviation cost
term is set to zero.

4.3. Avoiding Static Obstacles

An agent Ai has also to avoid colliding with the static obsta-
cles of the environment. In our simulations, such obstacles

are modeled as axis aligned boxes. Then, collisions are re-
solved by following an approach similar to the one described
above.

We first retrieve the nearest obstacle neighbours of agent
Ai. We assume that the agent has a global knowledge about
the environment and thus, we take all nearest obstacles into
account and not only the ones that are inside the agent’s vi-
sual field. In the second step of the algorithm, we define the
set of admissible speeds and orientations for the agent, based
on the minimal time to collision between the agent and its
obstacle neighbours. These sets are then merged to the ad-
missible speed and orientation domains defined in the sec-
ond step of Section 4.1. In our simulations, we assume that
the time to collision has the same effect on agent-agent in-
teractions and on static obstacle avoidance. Thus, the admis-
sible speed and orientation domains of Ai are defined by the
agent’s most threatening neighbour, whether this is an obsta-
cle or an agent. Finally, a new velocity vnew

i is computed as
described in the third step of Section 4.1.

We note that our algorithm allows the agent to avoid colli-
sions with the obstacles but not to move around them. There-
fore, some higher level path planning approach should be
used to ensure that the agent cannot get stuck in local min-
ima and can intelligently plan its path around the obstacles
(see e.g. [LD04, GO07]).

5. Experimetal Results

We have implemented our collision avoidance algorithm to
test its applicability in real-time applications and validate the
quality of the generated motions.

5.1. Quality Evaluation

We evaluated our approach against a wide range of test-case
scenarios, as proposed in the Steerbench framework of Singh
et al. [SKFR09]. These scenarios range from simple interac-
tions between pairs of agents to more challenging and large
test cases (see Figures 1 and 5):

• Overtake: An agent moves down a hallway and encounters
a slower agent in front.

• Squeeze: Two agents have to avoid a head-on collision
while walking through a narrow corridor (Figure 1(b)).

• Doorway: Two agents travelling in the same direction
have to pass through a narrow door to reach the other side
of a hallway (Figure 1(a)).

• Confusion-obstacle: Four agents travelling in opposite di-
rections cross paths, avoiding at the same time collisions
with a static obstacle.

• Oncoming-groups: A group of agents encounters another
group travelling in opposite direction.

• Hallway: Many agents cross paths in a hallway while
walking from opposite directions (Figure 1(c)).

• Crossing: Two groups of agents having perpendicular tra-
jectories meet at the intersection of a crossing (Figure 5).

c© The Eurographics Association 2010.
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(a) Our model (b) RVO

Figure 5: Interactions at a crossing. Using our approach,

stripe formations emerge that result in an efficient and

smooth flow compared to RVO.

• Group-swap: Two groups of 50 agents travel in opposite
directions and have to exchange their positions.

• Square: 40 agents are placed along the perimeter of a
square and have to walk toward their antipodal positions
(Figure 1(d)).

• Random: 1000 agents with random goals navigating
through an environment void of obstacles (Figure 1(e)).

• Forest: 2000 agents wandering through an environment
filled with small-sized obstacles (Figure 1(f)).

We refer the reader to the video accompanying this paper
for the results we obtained in simulating several of the afore-
mentioned scenarios. Artifacts in the video, such as foot
sliding, are due to our simplified animation technique and
not because of our steering algorithm. The virtual characters
were animated with a simple motion capture database con-
sisting of walking and idle animations. The speed of the ani-
mation was scaled to the speed of the characters, whereas an-
imation blending was used to smoothly transition from one
animation to another.

Realism. In all of our simulations, the agents smoothly
evade collisions with other agents and static obstacles. As
can be observed in the supplementary video, the motions of
the agents are oscillation-free. In addition, our approach ex-
hibits emergent phenomena that have been observed in real
crowds, such as the dynamic formation of lanes (see e.g.
hallway scenario), queuing behaviour (see e.g. oncoming-
groups and square scenarios), formation of diagonal stripes
in crossing flows (see e.g. intersection scenario), as well as
the emergence of slowing down and stopping behaviour to
efficiently resolve imminent collisions (e.g. random and for-
est scenarios). Natural, human-like, behaviour is also cap-
tured by our system. In the doorway scenario, for example,
one of the two agents slows down and gently allows the other
one to pass through the door first. Note, though, that after the
collision has been resolved, the two agents will keep moving
behind each other instead of reforming to walk side-by-side.
To alleviate this, we have recently extended our method to
take into account group formations (see [KO10] for details).

Figure 6: Comparison between real (red lines) and simu-

lated (black lines) trajectories.

Comparisons. Using our model, we reproduced several in-
teraction examples from the experimental dataset of Pettré
et al. As can be inferred from the companion video, the sim-
ulated agents were able to follow the trajectories of real hu-
mans very closely. Figure 6 shows a comparison between a
real and a simulated interaction. In this example, at any time
step, the simulated trajectories deviate from the real ones by
an average of only 0.21m.

We have also run comparisons with van den Berg’s Re-
ciprocal Velocity Obstacle method (using the RVO library
[vdBPS∗08]). We chose the RVO because of its increased
popularity among the methods that are based on the VO for-
mulation, and its many existing variants. The main differ-
ence between our approach and VO methods is that in the
latter, at every simulation step, each agent tries to find an
optimal collision-free velocity. Consequently, in rather con-
fined and crowded environments, the agent may not be able
to find such a velocity and thus, the only solution would
be to abruptly adjust its direction or change its speed and
stop. In contrast, our approach (by reducing the set of ad-
missible velocities) favours small changes in the velocity of
each agent, even though such changes may lead to a colli-
sion in the (far) future. Assuming that the other agents will
also slightly adapt their motions, collisions are resolved in
advance with minimal effort resulting in a smoother, more
optimal flow.

We also quantitatively compared our approach with RVO.
For that reason, a number of quantitative quality metrics
have been devised to objectively evaluate the steering be-
haviours of the virtual agents. In particular, we computed
the total time that an agent needs in order to reach its goal.
Furthermore, we used the sum total of squared curvature
samples along an agent’s path as a measure of the smooth-
ness of such a path [KH97]. Since we strive for effort ef-
ficient movements, we also computed the total acceleration
of each agent [SKFR09], approximated as the sum of its in-
stantaneous accelerations. To explicitly indicate the amount
of turning effort spent by the agent, we also measured the to-
tal degrees that an agent had to turn while advancing toward
its destination.

c© The Eurographics Association 2010.
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Scenarios
Time Smoothness Total Accel Degrees Turned

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Crossing
Our Model 39.41 1.06 0.06 0.16 135.71 61.05 82.25 64.59

RVO Model 48.28 6.25 3.56 2.3 464.56 130.65 311.84 142.59

Group-swap
Our Model 39.87 0.84 0.08 0.11 190.64 46.86 44.90 16.10

RVO Model 47.81 5.06 4.07 2.62 528.55 68.86 348.24 104.12

Table 1: Statistics for the crossing and group-swap scenar-

ios. The reported time, smoothness, total acceleration and

total degrees turned are measured in sec, (rad/m)2, m/sec2

and deg respectively.

Table 1 reports the corresponding statistics for the cross-
ing (Figure 5) and the group-swap scenarios. A student t-
test was performed afterwards to determine how significant
the results were. The analysis has shown that our approach
leads to time efficient motions, allowing the agents to fol-
low much more smoother paths than the agents in RVO (the
differences in time and smoothness are statistically signifi-
cant, p < 0.01). In addition, using our approach, the agents
have to spend less effort to avoid potential collisions and
thus, the total acceleration is significantly lower compared
to RVO (p < 0.01). The same applies to the turning effort of
the agents.

In the near future, we also plan to quantitatively com-
pare our technique with the new release of the RVO library
that is based on the optimal reciprocal collision avoidance
(ORCA) formulation [vdBGLM09], as well as with the re-
cent approach of Ondřej et al. [OPOD10] that formulates
the collision avoidance behaviour of virtual humans using a
combination of visual stimuli and motor response laws.

5.2. Performance Analysis

Besides the quality, we are also interested in the performance
of our proposed approach. To test its usability in real-time
applications, we selected a varying number of agents and
placed them randomly across the forest environment. Each
agent had to advance toward a random goal position avoiding
collisions with the obstacles and the other moving agents;
when it had reached its destination, a new goal was chosen.

Figure 7 highlights the performance of our approach for
up to 4,000 agents on a 2.4 GHz Core 2 Duo CPU. Note that
our current implementation is unoptimized and uses only
one CPU thread for computing the avoidance maneuvers of
the agents. As the figure indicates, even for 3000 agents, it
takes 129ms per simulation step to compute the three steps
of our collision avoidance algorithm. Since, in our system,
the velocities of the agents were updated at 5 f ps, it is clear
that our approach can simulate thousands of virtual charac-
ters at interactive rates.

6. Conclusions and Future Work

In this paper, we present a velocity-based method for real-
istic collision avoidance among virtual characters. The intu-
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Figure 7: The performance of our algorithm on the forest

scenario as a function of the number of agents. The reported

numbers are simulation only.

ition behind our approach is based on observed behaviour
of real people. The main hypothesis of our model is that an
individual tries to resolve collisions in advance by slightly
adapting his preferred direction and speed. Consequently, in
our simulations, the virtual characters exhibit smooth and
convincing motions, avoiding all collisions with minimal ef-
fort.

We have experimentally confirmed our hypothesis on
pairs of interacting participants by studying the effect that
the time to collision has on the desired velocities of the
participants. Currently, we are developing a tool to semi-
automatically track pedestrians in outdoor environments.
This will allow us to gain more insight into the avoidance
behaviour of individuals, couples and small groups of pedes-
trians, so that we can extend our model accordingly and cap-
ture a wide variety of crowd characteristics.

We also plan to conduct an experimental study in order to
investigate the behaviour of individuals when they have to
avoid collisions with static obstacles. In our model, the vir-
tual characters avoid in a similar way both static obstacles
and other characters. However, we believe that in real life
people react to obstacles much earlier and resolve the poten-
tial collisions by mainly adapting their orientations. Another
important extension for future work is to determine the pa-
rameters that affect an individual’s desired velocity. In our
current work, we assume that the desired speed of a virtual
human remains constant during the entire simulation. Never-
theless, parameters such as the crowd density can have a sig-
nificant effect on the velocity leading to different avoidance
behaviours. Finally, we also plan to combine our approach
with a more sophisticated animation technique [vBPE10] to
obtain higher quality animations.
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